4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK).
نویسندگان
چکیده
BACKGROUND In the United States, Blacks who smoke cigarettes have a higher mean blood concentration of the nicotine metabolite cotinine than White smokers. It has not been determined whether there are racial differences in the exposure to the cigarette smoke carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and in the detoxification of NNK metabolites. METHODS A community-based cross-sectional survey of 69 Black and 93 White smokers was conducted in lower Westchester County, New York. Information on smoking and lifestyle habits was collected and urinary concentrations of several tobacco smoke biomarkers were compared, including the NNK metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) and its glucuronide (NNAL-Gluc). A frequency histogram and probit plot of NNAL-Gluc:NNAL ratios were constructed to determine slow and rapid glucuronidation phenotypes. RESULTS The mean concentrations of total NNAL, urinary cotinine, plasma cotinine, and thiocyanate were significantly higher in Black men than in White men for each cigarette smoked. In women, the only biomarker that was significantly elevated in Blacks was plasma cotinine. A higher proportion of White versus Black women was categorized as "rapid" glucuronidators (two-tailed exact test, P = 0.03). In men, there were no significant differences in NNAL-Gluc:NNAL phenotypes. CONCLUSIONS The higher rates of lung carcinoma in black men may be due in part to a higher level of exposure to tobacco smoke carcinogens.
منابع مشابه
Metabolism and DNA single strand breaks induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and its analogues in primary culture of rat hepatocytes.
Previous studies have shown that the tobacco specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), is hepatocarcinogenic and results in alkylation of hepatic DNA in F344 rats. In this study, we have characterized the metabolism of NNK in cultured rat hepatocytes and have established the relationship between various metabolic pathways and the induction of DNA single strand ...
متن کامل4-Hydroxy-1-(3-pyridyl)-1-butanone, an indicator for 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced DNA damage, is not detected in human pancreatic tissue.
Tobacco smoking is the only known etiologic agent that causes pancreatic cancer. The tobacco-specific nitrosamine 4-(methylnitrosamino)-I-(3-pyridyl)-1-butanone (NNK) is a potent carcinogen in laboratory rodents that, independent of the route of administration, induces primarily lung adenocarcinoma (1). When administered in drinking water, NNK and its metabolite 4-(methy1nitrosamino)-1(3-pyridy...
متن کاملComplete inhibition of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced rat lung tumorigenesis and favorable modification of biomarkers by phenethyl isothiocyanate.
Phenethyl isothiocyanate (PEITC), which occurs in certain cruciferous vegetables, was tested for its ability to inhibit lung tumorigenesis in rats induced by the tobacco-specific nitrosamine 4-(methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK) in a study involving virtually lifelong administration of both compounds. In addition, two biomarkers of NNK metabolism [4-hydroxy-1-(3-pyridyl)-1-butanon...
متن کاملBiomarkers for human uptake and metabolic activation of tobacco-specific nitrosamines.
Tobacco-specific nitrosamines are a group of carcinogens formed from nicotine and related tobacco alkaloids. Two of these compounds, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine, are believed to be involved as causative agents for cancers of the lung, oral cavity, esophagus, and pancreas associated with the use of tobacco products. The goal of the studies descr...
متن کاملShort Communication COMPARATIVE METABOLISM OF THE TOBACCO-SPECIFIC NITROSAMINES 4- (METHYLNITROSAMINO)-1-(3-PYRIDYL)-1-BUTANONE AND 4-(METHYLNITROSAMINO)- 1-(3-PYRIDYL)-1-BUTANOL BY RAT CYTOCHROME P450 2A3 AND HUMAN CYTOCHROME P450 2A13
The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and its carbonyl-reduction product, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), are potent lung carcinogens in rats and are presumed human lung carcinogens. NNK and NNAL are bioactivated to DNA-binding intermediates via hydroxylation of the carbon atoms adjacent to the nitroso moiety (i.e., -hydroxyl...
متن کاملQuantitation of microsomal alpha-hydroxylation of the tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone.
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is activated to DNA alkylating species via two different alpha-hydroxylation pathways. Methylene hydroxylation leads to DNA methylation, whereas methyl hydroxylation yields DNA pyridyloxobutylation. We have developed a high-pressure liquid chromatography assay utilizing radiochemical detection that permits the determination of the extent of m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans
دوره 37 شماره
صفحات -
تاریخ انتشار 1985